Nontwist Hamiltonian systems have shearless invariant curves that act like transport barriers in phase space [1, 2]. We use Slater's theorem to develop a qualitative and quantitative numerical approach to determine the breakup of these shearless invariant curves in the phase space of area-preserving maps [3]. We also determine the breakup critical parameters, of the shearless curves, with a procedure based on the determinism analysis performed on the recurrence plot of orbits near the critical transition [4]. As numerical examples we present the onset of such transport barriers in tokamaks and their dependence on the control parameters, namely, the fluctuating electric field and the equilibrium electric field shear [5].
References
1- P. J. Morrison, Physics of Plasmas 7, 2279 [2000].
2- D. Del-Castillo-Negrete, Physics of Plasmas 7, 1702 [2000].
3- C. V. Abud, I. L. Caldas. Physica D 308, 34 (2015).
4- M. S. Santos, M. Mugnaine, J. D. Szezech Jr, A. M. Batista, I. L. Caldas, M. S. Baptista, R. L. Viana. Chaos 28, 085717 (2019).
5- F. A.Marcus, M. Roberto, I. L. Caldas, K. C. Rosalem, Y. Elskens. Physics of Plasmas 26, 022302 (2019).