Observation of Coherent Forward Scattering in a disordered quantum system

Radu Chicireanu*1

¹PhLAM laboratory, CNRS, Université de Lille (PhLAM) – CNRS, Université de Lille – Laboratoire PhLAM - UMR 8523 Université de Lille, Cite Scientifique Bât. P5, Bureau 58,, France

Abstract

Anderson localization is the absence of diffusion in certain disordered media. The transport and localization properties of disordered quantum systems are greatly affected by symmetries. Here, we present a novel technique which allows the realization an artificial gauge field in a synthetic (temporal) dimension of a disordered, periodically driven (Floquet) quantum system. Our technique is used experimentally to control the Time-Reversal Symmetry properties of the Kicked Rotor – a paradigmatic model of classical and quantum chaos. Using this system, we were recently able to provide the first observation and characterization of a direct 'microscopic' interference smoking gun of the Anderson Localization, the so-called "Coherent Forward Scattering" (CFS) phenomenon – thus confirming its very recent theoretical prediction. This result is complemented by an accurate measurement of the universal scaling function b(g) [4] in two different universality classes. The Coherent Forward Scattering, in conjunction with its weak-localization counterpart, the "Coherent Backscattering" (CBS), can be extremely valuable tools for future probing novel phenomena, emerging from the interplay of many-body effects or symmetry properties with the Anderson physics.

Keywords: Quantum chaos, Kicked Rotor, Anderson localization, Artifical gauge fields, Coherent Forward Scattering

*Speaker